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Abstract 

 Integrating various technical systems into creative performances, especially dance pieces, 

is a compelling challenge that has become more prevalent over the past century. Since creative 

and technical teams must collaborate to produce a final work that is not only technologically 

possible but also creatively meaningful, one of the more common practices is to utilize motion 

capture technology to analyze the movements of the dancers themselves and use the resulting 

information to directly influence the performance. However, limitations to the current systems 

include the potential for high costs, intrusive or restrictive equipment that inhibits the freedom of 

dancers, and the fact that many techniques cannot be applied in real-time. As such, I here present 

a system developed with Microsoft Kinect, at a relatively cheaper $150, to dynamically analyze 

the qualities of dancers’ movements without interfering with their range of motion. Various 

mathematical equations written in C# derive relevant features from the low-level joint position 

data provided, and this information is fed through the Wekinator machine learning suite [1] to 

train algorithms to classify the expressiveness of movements; since emotion is too subjective of a 

parameter, the quality of motion is quantified by the four Effort dimensions of Laban Movement 

Analysis: Weight, Space, Time, and Flow [2]. While the resulting classifications are now sent to 

a Max/MSP patch for visualization, the information is transmitted in the universal Open Sound 

Control (OSC) format [3], which could easily be routed to other systems, such as those that 

control the light and sound elements of dance performances.  

 

 

 

 

 

 

 

 

 



1. Introduction 

As technology has become ever more prevalent in our everyday lives over the last century, 

artists in various fields have begun to take note and integrate computational systems into their 

creative works. This is especially prevalent in the realm of performance, even in the most basic 

modern-day inventions of programmable light and sound boards that flesh out the reality of a 

piece on stage. Beyond these common elements, certain artists have even incorporated things 

such as video projections, animations, or even robots into their productions. This is especially 

common in the realm of dance, where various choreographers, most notably in more 

contemporary pieces, have brought technical elements into their works in order to further explore 

the relationship between the dancer and his environment. Some specific examples of this trend 

include the piece “Seraph” by Pilobolus [4]
1
, in which a single dancer interacts with two flying 

robots, or Chunky Move’s “Mortal Engine” [5], which incorporates a full multimedia landscape 

in which the dancers interact with light and sound in novel ways. Clearly, then, new possibilities 

for unique and dynamic choreographic works have emerged as a direct result of advancements in 

the realm of computation. 

In particular, one technological application that has become increasingly popular is that of 

using motion capture techniques to acquire, analyze, and employ datasets of motion information 

from the performers themselves. The lower-level gesture information acquired can be used to 

control lights, sounds, videos, or nearly any other technological system. Typically, this approach 

requires dancers to wear special bodysuits equipped with sensors or reflectors to transmit 

movement data to the system [6] [7]. While these setups can and do provide interesting and 

useful information to artists, they are suboptimal because of their cost, which can be above the 

tens of thousands of dollars for a full motion capture studio, and the restrictions they can place 

                                                             
1 See also the company’s webpage at www.pilobolus.com 

http://www.pilobolus.com/


on the dancers themselves, such as in systems that require performers to wear gesture-tracking 

body sensors. Additionally, these systems often cannot be used in real-time during the 

performance; instead, the analysis is often performed off-stage and then somehow incorporated 

into the show at a later time. As such, the existing approaches to utilizing motion capture data in 

relevant and interesting ways are limited by cost, restrictiveness, and time. 

I therefore propose here a system that is cheap, easy-to-use, and dynamic for analyzing 

expressiveness in dance performance. As will be detailed in later sections (Section 4 – My 

Solution: The XBOX Kinect), my system costs less than $150, does not interfere with dancers or 

the creative process in any way, and can be used in real-time to send output parameters to 

various technical elements of the show. This is accomplished through an interpretative process 

that converts the low-level position data acquired into relevant mathematical descriptors (Section 

5 – Motion Feature Equations), which can then be better correlated to expressiveness, as 

represented by the Effort dimensions of Laban Movement Analysis (Section 3 – Laban 

Movement Analysis). This system provides a simple and effective means (Section 6 – System 

Analysis) for producing meaningful artistic output from the very actions of the dancers in the 

piece. Through my contributions to the field, it is clear that even though my methods and 

technical handling of the motion capture information do not deviate from established techniques 

(Section 7 – Related Work), my system as a whole advances the subject area and provides new 

opportunities for creative works to incorporate technology into performance (Section 8 – 

Conclusions and Future Work). 

2. Background 

As discussed above, current motion capture systems possess limitations that restrict their 

usefulness in creative projects; specifically, technologies used for analyzing expressiveness in 



dance performance are often suboptimal or inadequate in terms of providing flexible, easy-to-use 

systems that can dynamically influence the content of a show. One of the more recent systems, 

discussed in Jessop’s work [6] and used in Tod Machover’s multimedia opera, “Death and the 

Powers” [8] [7], involves the use of body sensors that transmit gesture information in real time. 

Although these tools can therefore solve the problem of requiring analysis after the fact, they are 

often still expensive, and require being created or tailored specifically for the application at hand. 

Additionally, these sensors, and those used in other systems, typically have a limited range of 

relevant information that can be acquired; for example, Jessop’s system can be trained to 

recognize gestures, but has no capabilities for determining the position of a body in space. Even 

beyond these limitations, such sensors can also interfere with the freedom and artistic capabilities 

of performers and choreographers, as wearing such equipment requires a dancer to adapt his 

movements to work with the technology.  

Besides these issues of cost, complexity, and artistic limitations, we must also consider the 

different possibilities for how to actually evaluate the expressiveness of a performer. That is, as 

the system acquires movement data, in what ways should we analyze and manipulate that input 

information to derive meaningful approximations for the qualities of motion in the dance? 

Emotion, measured either directly (i.e. by classification of movements into categories such as 

Happy, Sad, Angry, etc.) or on a Valence-Arousal plot, has been used as a measurement in other 

works [9] as the output of expressiveness-tracking systems. However, since emotion is such a 

complex and subjective phenomenon, I believe that such a classification system would fail to 

perform as accurately as one using a different measurement. To reinforce this point, we can 

observe that even a single performance can produce widely varying responses among individual 

audience members, and so deriving a specific emotional descriptor for a dance or sequence of 



motions would be difficult for humans, let alone for any machine learning techniques. 

Furthermore, we must also consider the fact that it is possible to have an evocative and 

expressive series of movements that does not convey a particular emotion but is perhaps more 

abstract instead; for example, the choreography of Merce Cunningham often involves movement 

for its own sake, as he sees “all movement as dance” [10]. As such, we choose not to directly 

track emotion as the feature of expressiveness measured by our system. 

We therefore require some other set of features that will allow our system to accurately 

convey a sense of the qualities of movement without relying directly on an interpretation of 

emotion. Mapping movements to a 2-dimensional plot of Valence and Arousal is one technique 

used to approximate emotion, but, as noted before, such mappings are often subjective and 

difficult to program; specifically, ascertaining such information is not ideal given the low-level 

movement information provided by motion capture systems, which generally only return joint 

positions. As such, I have found that a suitable and quantifiable mapping layer for this project 

involves the Effort dimensions of Laban Movement Analysis. These features, described in 

further detail in the next section, can easily model the expressiveness of movement directly from 

low-level inputs, and they allow the system to reliably and effectively classify gestures in a way 

that is consistent and significantly more objective. 

3. Laban Movement Analysis 

We have therefore seen that emotion is too subjective a feature to reliably calculate from the 

low-level information attained through motion capture techniques. As such, the system requires 

an output layer, comprised of features that can be efficiently and accurately derived from the 

acquired movement data, to be used in determining the expressiveness of gestures. Such features 



could ideally be used not only to classify the emotions or valence-arousal values of a dance but 

also to serve as meaningful representations of expressiveness in and of themselves. 

The solution to this issue of describing the 

qualities of movement can be found in the 

teachings of Rudolf von Laban, a Hungarian 

dancer who developed a unified theory of 

movement that detailed ways in which dance 

could be described qualitatively [2]. This Laban 

Movement Analysis (LMA) has been used 

throughout the past century to help describe the 

properties of movement in all aspects of life, but 

it is especially useful in attempting to convey the 

qualities of motion in the context of performance. 

The expressiveness of dance and gesture can be especially well qualified using the idea of Effort. 

In LMA, Effort is a four-dimensional set of features, as shown in Figure 1, that describes the 

characteristics of movement; every gesture can then be described in terms of a value for the four 

Effort dimensions, Weight, Space, Time, and Flow. These values range from Strong to Light, 

Direct to Indirect, Sudden to Sustained, and Bound to Free, respectively.  

Weight is a measurement of the “impact” of movements [11] and can also be thought of as a 

relationship to gravity [2] or “a measurement of how much energy is being put into the 

movement” [6]. For example, movements with Heavy Weight tend to have a lot of force and 

strength such that a lot of energy is invested in the movement and any impact made would be 

Figure 1 A 4-dimensional graph of the Laban 

Effort dimensions.  
From R. Cottin on Wikimedia Commons.  

Accessible at http://commons.wikimedia.org/wiki/ 

File:Laban-effort-graph.jpg 



significant. On the other hand, Light Weight motions are more gentle and delicate, and may 

appear more airy and free given their softer impact. 

Space, when considered in terms of Effort dimensions, can be thought of as a representation 

of the direction and path of a movement. That is, a motion that is Direct in Space will have a 

more linear feeling in that its focus is on moving towards a specific destination point in a clear 

and exact trajectory. Indirect movement will instead feel more angular and wavy in that the focus 

of motion is not to reach a certain point but rather to move through the surrounding area in a less 

precise path. 

Time is a measurement of the duration of movement in LMA, and motions can be qualified 

as either Sudden or Sustained. Sudden movements are quick, jerky, and perhaps unexpected, as if 

there are abrupt shifts in the purpose of motions. Contrary to these rapid changes, Sustained 

gestures feel more held out and stretched in terms of their ease and fluidity, and there is a general 

sense of continuity in the legato nature of such movements. 

Flow is perhaps the least intuitive of the four Effort dimensions, but can be understood quite 

easily in terms of the fluidity and tension of movements [2]. That is, Free movements tend to be 

carefree and loose, with a sense of relaxation and the possibility for various possible motions to 

follow the current gesture. Bound movements, however, involve a muscular tension along with a 

sense of being restricted, as if the potential for further motion is limited.  

Now that we have described these four Effort dimensions, it is easy to see that any motion 

can be distinctly represented by a point in the 4-D space formed by considering each quality 

along an axis. This notion is supported by the fact that these dimensions can take on values in a 

continuous range between their extremes, and are not simply limited to, say, Heavy and Light. 

For example, a motion could be described as having a Weight quality that lies between these two 



extremes if it were neutral in terms of that dimension by being neither delicate (Light) nor 

forceful (Heavy) in its impact. However, since it is difficult to ascribe a real-valued classification 

to an Effort dimension (for example, consider how difficult and odd it would be to attempt a 

gesture of precisely 0.687 Weight on a scale of -1 to 1), we can justifiably make the simplifying 

assumption that movements are classified in a binary fashion (i.e., either Light or Heavy, but 

with no specific value for the Weight dimension). 

It is important to note that it is rather difficult to isolate Effort dimensions from each other 

when considering actual movements. That is, every gesture or motion has a corresponding 

classification for each of the four dimensions, and so focusing on one specific trait while holding 

the other three neutral would be extremely challenging, if not altogether impossible. To 

demonstrate this point, try to imagine a movement that has Heavy Weight, but is altogether 

Spaceless, Timeless, and neutral in Flow; given how difficult it is to conceive of such an isolated 

motion, we can now feel confident in our assertion that the four Effort dimensions are closely 

interrelated.  

However, even given this closely correlated nature of the four dimensions, it is possible to 

maintain one (or perhaps two) of these qualities as neutral and consider the range of gestures that 

are possible when the other dimensions are allowed to vary. In LMA, such sets of movements are 

defined as Drives, which are the collections of movements defined by the absence of a single 

Effort dimension. For example, Vision Drive is the realm of motions that are Weightless but that 

have specific qualities of Flow, Space, and Time; within this Drive, since actions are neutral in 

Weight, they tend to have an “external” feeling associated with a sense of “planning” or 

“envisioning” [2]. Aside from Vision, the other three Drives are Action, Spell, and Passion, 

which correspond to a lack of Flow, Time, or Space, respectively. Of particular interest is the 



Action Drive, which contains the set of motions that are “task-oriented” given that they are well-

defined in terms of Weight, Space, and Time without respect to Flow; that is, the movements in 

Action Drive can be considered the quintessential gestures that humans can perform without 

taking intent or feeling into consideration [2]. Some specific examples include the Punch action 

(Heavy, Direct, Sudden) and the Float action (Light, Indirect, Sustained), although there are a 

total of eight different gestures corresponding to each possible combination of classifications for 

the three Effort dimensions excluding Flow.
2
  

4. My Solution: The XBOX Kinect 

After considering all of the limitations of the current systems in the field of affective analysis 

of dance performance, I found a solution in Microsoft’s XBOX Kinect. This tool is a cheap 

($150) peripheral originally designed for skeletal tracking and gesture recognition for various 

video games, but the potential of this camera to be used for other applications was quickly 

realized by programmers and computer enthusiasts around the world. Various open source 

frameworks emerged for utilizing the information from the color camera, depth sensor, and 

skeletal tracking abilities of this device, and Microsoft soon released their own official Kinect 

SDK in response to its popularity. This SDK integrates with Microsoft Visual Studio 2010 on 

Windows 7, allowing for programs written in C#, C++, or Visual Basic to interact directly with 

the data acquired through the device. For my system, I decided to use C# as my programming 

language given its similarities to Java, with which I was already familiar. In order to establish the 

basics of getting input data from the Kinect camera, the majority of my code for connecting the 

Kinect and attaining new motion information was copied directly from the code provided by Dan 

Fernandez in his “Skeletal Tracking Fundamentals” program [12]. 

                                                             
2 Interested readers are encouraged to find more information about LMA, Effort, and the various Drives from 

sources online such as http://www.lmaeffortbank.com [2] 

http://www.lmaeffortbank.com/


 

Figure 2 This architecture diagram represents the flow of information through the Kinect motion analysis system. 

Using the APIs provided with the Kinect SDK, I designed a system, outlined in Figure 2, to 

derive meaningful information from the joint data provided by the motion capture camera. Since 

the Kinect peripheral automatically tracks the X, Y, and Z coordinates of 20 joints of the human 

skeleton accurately and efficiently, I was free to come up with ways to use that data instead of 

having to worry about how to track individual dancers. My approach was influenced by the ideas 

of Jessop, Zhao, Badler, and others in their various research papers [6] [11] [13], which are 

discussed in more detail in the Equations and Related Work sections; from their research, I 

designed my system to derive various mathematical features that could then be related to the 

LMA Effort qualities previously described. These models contain information ranging from the 

velocity and acceleration of joints to the swivel angles of both elbows. 

Since expressiveness is a complicated facet of movement, I looked to find ways in which to 

automate the analysis process as much as possible. I therefore decided that while I could 



accurately reason about which mathematical features would be significant in the analysis, my 

ability to then determine how those features affected the Effort dimensions would be 

significantly worse than the ability of established computer learning algorithms to perform that 

task. That is, the code written with the Kinect SDK calculates the various mathematical 

components of motion, but those values are then sent to a separate machine learning suite, the 

Wekinator, for classification [1]. Having the Wekinator perform the regression algorithm on my 

dataset and classifying the Effort dimensions with an automatically generated neural network or 

discrete classifier removes the human error involved with trying to assign significance to various 

movement features, and enables the machine learning algorithm to make predictions and 

connections about the subtle complexities of movement that I would not be able to make on my 

own. Taking this approach therefore enabled me to calculate the significant features of 

movement and manipulate which were sent to the classifier in order to better test the 

performance and accuracy of the system, as described in the Analysis section, without needing to 

write my own neural network or AdaBoost code. Additionally, this automation in the learning 

process enables the system to be built and trained with a dataset of movement information 

collected in the lab (Section 6 – System Analysis) before being used dynamically in a 

performance setting. Ultimately, then, the constant flow of low-level Joint position information 

from the Kinect through the C# feature equations on to the regression algorithm created by the 

Wekinator enables our system to be used in real-time, as the Effort dimension classifications are 

made at the same time as the Kinect is acquiring the next frame of movement information from 

the dancers. 

This approach is justified because of the inherent complexity of motion, especially with 

respect to expressiveness and the subtleties involved with the layered qualities of dance as 



described with Effort features. Since it is nearly impossible to have a movement that is purely 

performed in terms of one Effort dimension, as discussed previously, we can see that dance 

motions involve an interrelationship of various qualities; this then translates into the fact that 

each movement feature sent as input to the Wekinator can influence the classifications of 

multiple Effort dimensions in potentially complicated ways. That is, there is not a simple one-to-

one correspondence between the value of a certain motion feature equation and the Effort 

classification of the movement that would result. For a specific example, we can see that 

something as simple as the acceleration of a joint can influence the Flow dimension, but that 

same acceleration value could also have an impact on the Weight classification, especially given 

the fact that we are considering Weight to be related to the amount of energy associated with a 

movement. Therefore, the relationship between the mathematical motion feature inputs and the 

Effort dimension outputs is more complicated than could be determined manually, and so using 

the Wekinator to automatically analyze the input data and discover connections between that 

input and the resulting output classifications is a justified and intelligent design decision.  

It is also significant to note that both the transfer of motion features from the C# code to the 

Wekinator and the resulting output of LMA Effort classifications take place through Open Sound 

Control (OSC) messages [3]. These messages comprise a standard format for data interchanges 

that enable the Kinect data and computed features to be sent from C# through the Ventuz OSC 

wrapper to the Wekinator, which then outputs the Effort dimension values in OSC messages; in 

my system, the code to translate the C# motion features into OSC messages for use by the 

Wekinator was copied directly from the source code written by Jordan Rogers-Smith [14]. For 

this project, I used Max/MSP, a programming language designed for use in the fields of music 

and the arts, to visualize the resulting LMA Effort classifications (Section 6 – System Analysis). 



While the resulting Max/MSP patch used for demonstration in this system is useful, various 

other systems could be manipulated with the resulting Effort data. For example, these output 

messages could be picked up by countless other systems, such as those that control lighting or 

sound in onstage performances, for dynamic artistic opportunities involving the real-time 

manipulation of performance elements based on the expressiveness of the performers 

themselves.
3
  

5. Motion Feature Equations 

In order to more accurately determine values for the LMA Effort dimensions corresponding 

to a dancer’s movements, I needed to find various equations that could convert the low-level 

information about joint positions into more descriptive models of motion. I found such a 

collection of equations in Zhao’s paper [11], wherein he effectively represents facets of 

movement with mathematical features that can be better correlated with the LMA Effort 

dimensions. Using his equations, which I copied directly to implement in my C# code, I was then 

able to use the basic skeletal tracking data acquired from the Kinect to calculate useful features 

of the dancer’s movements. This section therefore borrows heavily from Zhao’s work, both in 

terms of the equations themselves and of the descriptions of the formulas and how they 

correspond to Effort dimensions. 

Intuitively, velocity and acceleration of the 20 joints are more relevant to the qualities of 

gesture than simply the location of a dancer’s body in space, and so these first and second 

derivatives of position were approximated as described below. In addition, the third derivative of 

position, the jerk, is calculated both for its use in the torsion equation detailed further on in this 

section and for its usefulness as an input feature in and of itself.  

                                                             
3 A particularly significant piece of related work is “Death and the Powers,” [8] [7] which is described in further 

depth in the Related Work section.  



Let             represent the X-coordinate of the position of Joint i at the time corresponding 

to frame t. Then let    
 

                 
 

 

  
 represent the time interval between two frames 

captured by the Kinect skeletal tracker. This leads to the following equations for the velocities 

and accelerations of joints (analogous equations exist for the Y- and Z-coordinates): 

            
                            

  
 

                
                            

  
 

        
                                    

  
 

While the position of joints is still important to consider,
4
 these velocity, acceleration, and 

jerk equations are more useful in determining the Effort dimensions since there is more direct 

correlation between these values and the qualities of movement. For example, if a dancer is 

moving abruptly and changing the direction of his joints in a rapid way, he will be moving with 

Sudden Time; this Effort classification is therefore closely related to the acceleration and jerk of 

his skeleton. Zhao also mentions that having a large number of accelerations and variations in 

velocity corresponds to a Free Flow, since Bound Flow movements would be less likely to be 

changing in speed or direction during a gesture. [11] 

In addition to these more basic descriptors of the dancer’s movements, Zhao also presents 

some more complicated feature equations, such as the curvature and torsion of a joint’s trajectory 

and the swivel angle of his elbows [11]. The first of these equations, the curvature, measures the 

change of the tangent of a joint’s trajectory over time. A related concept, the torsion, measures 

the extent to which a joint twists along its path. They are defined as follows, using the 3-

                                                             
4 For example, as mentioned in Zhao’s paper [11], the height of a dancer’s sternum can be indicative of the Weight 

dimension, as having a lower sternum tends to correlate to a heavier sense of movement.  



dimensional vectors of velocity (  ), acceleration (   , and jerk (    of joints in each of the X, Y, 

and Z axes.
5
 

                      
   
      
      

  

         

 

               
               
                  

 

         
 

Since these equations are related to the trajectory of movement and the degree to which motions 

curve and twist along a path, it is evident that they correspond to the Space dimension; that is, a 

gesture with a high degree of curvature or torsion is much more likely to be Indirect than Direct 

given that the movement is not as linear in terms of direction towards a destination. Curvature 

and torsion can also relate to the Weight of a movement [11], given that a motion with more 

twisting along its trajectory is likely to be less forceful and less focused, thereby presenting a 

Light Weight gesture with less of an impact. 

Perhaps the most complicated of the equations included in this system, the swivel angle of 

the dancer’s elbows, is a useful mathematical feature that helps to quantify, among other things, 

the Space and Flow of movements. This correlation makes sense because both Indirect and Free 

movements will tend to have a greater fluidity and range of motion in the elbow as compared to 

Direct or Bound gestures, which are more likely to involve rigidity in the elbows and fewer 

changes in the swivel angles of the arms.  

                                                             
5 Equations copied directly from Zhao’s paper [11], with descriptions and explanations of relevance to Effort 

dimensions paraphrased from that work. 



Intuitively, the swivel angle of the elbow corresponds to the location of the elbow relative to 

the vector connecting the shoulder and wrist joints. We define this angle more precisely with the 

following diagram, taken from Zhao’s paper [11]. 

 

Figure 3 This diagram displays the vectors and the swivel plane that are related to the swivel angle, θ 

 

Let    represent the swivel plane, which is defined by the normal vector    along the path from 

the shoulder joint to the wrist joint and containing the elbow joint, at position  . We then define 

the vector    to be the projection of    , the unit vector pointing along the negative direction of 

the Z-axis (that is, towards the floor), onto    [15]: 

    
              

                
  

The vector    is then defined as the vector from  , the center of   , to the elbow position at    

If we then let    represent the vector from the shoulder to the elbow and    represent the vector 

from the shoulder to the center of the swivel plane, we can compute    according to the 

following: 

                         

In the proceeding equation, α is the angle between the shoulder-to-wrist vector,   , and the 

shoulder-to-elbow vector,   . Now, if we let     represent the vector from the elbow joint to the 



wrist joint, we have the following trigonometric equations copied from Zhao’s paper to compute 
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Then, once this value has been used to compute   , we use trigonometry and the definitions of 

the cross and dot products to derive the following equation for θ, the swivel angle: 

 
 
 

 
         

       

        

         
     

        

  

                   
    

    
                       

Although all of these equations have been discussed in terms of the more obvious 

connections to Effort dimensions [11], it is also the case that there are correlations between these 

mathematical equations describing lower-level movement characteristics and the LMA Effort 

dimensions that the learning algorithms can discern beyond our more intuitive understanding. As 

mentioned previously, this potentially complex system of relationships explains why I chose to 

use the Wekinator for the analysis of mathematical data in order to classify movements. Where 

human error and oversight could skew the results or miss connections between these equations 

and the low-level motions from which they are derived, the neural networks and classifiers of the 

machine learning suite are able to automatically and empirically relate this data to the higher-

level LMA dimensions. This, in turn, allows us to observe the patterns and subtleties that arise in 

the movement classification without having to worry about performing analysis by hand. Such an 

approach also leads to more accurate classification models.  



Ultimately, then, since the system performs a continuous process of motion capture, feature 

extraction, and classification through the Wekinator’s algorithms, we have built a comprehensive 

software package that analyzes the expressiveness of a dancer’s movements while they are being 

performed; the Effort dimensions of his actions are classified in a cheap, non-restrictive way that 

is done during the process of movement, rather than having to be done after the fact in a lab. To 

reiterate, this use of motion feature equations and the automation of the machine learning process 

are important in building a software system that can dynamically analyze the qualities of 

movement performed in real time.  

6. System Analysis 

Before explaining the details of machine learning tools and the input dataset used for 

training, I will first summarize my methods for analyzing the system and the corresponding 

results found. Once I had trained one neural network for each of the four Effort dimensions in the 

Wekinator using my input dataset, I tested the performance of the system by executing various 

different movements in front of the Kinect and judging how well the classifications displayed in 

the Max/MSP patch actually matched my intended qualities of movement. In a first run, the 

results were suboptimal, as it seemed that the system was only accurate when I was performing 

gestures similar to the ones used in training. This therefore led me to exclude joint position from 

the collection of input features; this decision is justifiable because the Effort classifications 

provided should be independent of location in space. After this change to the dataset and the 

subsequent retraining of the algorithms, the system had much better performance. Specifically, 

the Effort classifications provided more accurately matched the desired values, and the system 

performed with minimal latency. These results and the analysis process will now be discussed in 

more detail, followed by a summary and discussion of my findings. 



Using the Wekinator machine learning suite, training the system to classify movements based 

on the LMA Effort dimensions became a relatively simple task. As described previously in the 

architectural diagram for the system (Figure 2), the raw data from the Kinect was analyzed in the 

C# code according to the equations presented above; then, these input features were sent in OSC 

messages (one per frame) to the Wekinator. Each message contained 222 input features, 

corresponding to the velocity, acceleration, and jerk of each of the three coordinates (X, Y, and 

Z) of each of the 20 joints (3 * 20 * 3 = 180), the curvature and velocity of each of the 20 joints 

(2 * 20 = 40), and the swivel angles of both elbows (180 + 40 + 2 = 222).  

Then, once the machine learning tool was configured to accept these messages as its input 

features, I provided examples to the Wekinator by dancing with certain Effort qualities. 

Specifically, I set the tool to track one Effort dimension at a time and set that feature’s value to 

either 1 or -1. I then performed a short sequence of movements that embodied the given qualities 

(choosing distinct pieces of music for each of the 8 rounds helped to focus my motions 

appropriately) and recorded those examples into the dataset. For the four characteristics, I chose 

the value of -1 to correspond to Light, Indirect, Sustained, and Bound and the value of 1 to 

represent Heavy, Direct, Sudden, and Free for the dimensions of Weight, Space, Time, and Flow, 

respectively. 3747 examples were recorded over the session, with roughly 400-500 examples per 

classification corresponding to about 15 seconds of consecutive dance time. Each of these 

recorded sessions included a relatively diverse variety of movements within the given realm of 

motion constrained by the specifically set classification value. This then helped the system to be 

able to learn from a varied sampling of gestures with a specific Effort classification. 

Once all of these examples were recorded and saved into a dataset, the Wekinator’s training 

algorithm automatically generated and refined one neural network for each of the four 



dimensions. In the learning process, only the examples that directly pertained to a given Effort 

dimension were included; that is, the examples corresponding to when I danced with Heavy 

Weight were only used in training the Weight neural network and were ignored in training the 

other three networks. Training was taking a prohibitively long time, however, which made sense 

given that the dataset contained 3747 examples. Since this learning process was therefore too 

slow, I followed the advice presented on the Wekinator’s homepage
6
 and trained each network 

for 175 epochs with the learning rate decreased to 0.03 from 0.3 (this enabled the network to be 

trained quickly but with a decreasing error rate per epoch such that the algorithm did not settle 

into a local, rather than global, extreme value in the training process
7
). This gave the following 

RMS error values for the accuracy of the model on the training set: 

Dimension RMS Error on Training Set 

(Including Position) 

Weight 0.05 

Space 0.1 

Time 0.11 

Flow 0.18 
Table 1 Error rates for the four trained neural networks for each of the Effort dimensions 

Once the neural networks were trained on the example data, their outputs were sent through 

an OSC message to a Max/MSP patch, shown in Figure 3, designed to separate the Effort values 

and display them on a range from -1 to 1. It is important to note that the actual outputs of the 

neural networks were not constrained to the range [-1, 1], and so scaling was performed within 

the patch to fit the information into the [-1, 1] interval represented by the Max/MSP slider object. 

In addition to these real-valued sliders, the output was also visualized with a text message 

classifying each dimension into one of its two possible values, as determined by a threshold 

value of 0 such that values below 0 were rounded to -1 and those above 0 were rounded to 1. 

                                                             
6
 http://wiki.cs.princeton.edu/index.php/ChucK/Wekinator/Instructions 

7 Help from http://www.willamette.edu/~gorr/classes/cs449/momrate.html with understanding the learning rate for 

neural networks.  

http://wiki.cs.princeton.edu/index.php/ChucK/Wekinator/Instructions
http://www.willamette.edu/~gorr/classes/cs449/momrate.html


When I then 

performed a new series 

of movements in front of 

the system to test its 

performance, I found 

that the output 

classifications matched 

the Effort dimensions 

that I was trying to 

convey fairly well in 

certain situations. I did, 

however, notice some discrepancies and difficulties in attempting to get the system to recognize 

the qualities of my motions in the general case, especially when the new movements I was 

performing were not spatially similar to the training movements; specifically, the system did not 

make the distinctions between different classifications as clear as they should have been.  

Because of this, I decided to run the same dataset through the Wekinator but with discrete 

output features taking on either one of the two values with no real-valued output in between the 

two extremes. This transformed the problem into one of discrete classification using an 

AdaBoost learning algorithm with decision trees as the weak learner. When I analyzed the 

accuracy of this scheme in the Wekinator, I received the following results: 

 

 

 

Figure 4 This Max/MSP patch is used to visualize and classify the Effort 

dimensions as sent by a real-valued neural network learner from the Wekinator. 



Dimension Accuracy of Model on 

Training Set 

Cross-Validation 

Accuracy (2 Folds) 

Cross-Validation 

Accuracy (5 Folds) 

Weight 99.72% 100% 99.72% 

Space 100% 99.49% 100% 

Time 100% 99.78% 99.89% 

Flow 100% 99.32% 99.66% 
Table 2 Accuracy of AdaBoost classifier on dataset including position 

 These values show significant accuracy, and so it would seem that the Wekinator provides 

better results for my system when run with a discrete classifier rather than a real-valued neural 

network. However, 

this result is not 

entirely true, as the 

training dataset did not 

include examples for 

which the 

classification value for 

an Effort dimension 

was 0 (corresponding 

to a neutral classification). The inclusion of these values would likely help to stabilize some of 

the results from the neural networks, but would not be useful in training the discrete classifiers. 

Additionally, the cross-validation accuracies presented in Table 2 are misleading since even with 

these very high accuracy values, the system did not perform that well in properly classifying 

novel gestures. This then suggests that the learning problem presented to the Wekinator’s 

algorithms was different and easier than the actual problem I was intending it to solve. To 

clarify, this means that although the Wekinator’s algorithms had high cross-validation 

accuracies, this was with respect to a problem that did not accurately represent the greater 

Figure 5 This Max patch is used in the discrete case, for which the Wekinator 

generates four AdaBoost-enhanced decision tree classifiers to assign a single label to 

the Effort dimension of a movement. 



problem of classifying the expressiveness of dance movements.
8
 The system error was especially 

noticeable when movements were in different spatial locations than those included in the training 

dataset; the system was therefore more prone to making errors in assigning Effort dimensions to 

movements that did not correspond (at least loosely) to the training gestures.  

Given the wide spread of potential outputs for the neural networks, the difficulty in properly 

scaling these results to a meaningful range, and the lack of neutral-valued examples in the 

dataset, I found that the Wekinator provided better results for my system when run with a 

discrete classifier rather than a real-valued neural network. This in turn supported the simplifying 

assumption that while performed movements exist on a continuous range for the Effort 

characteristics, representing these features is more accurate when the Laban analysis assigns 

either one label or the other to a given Effort dimension. For example, while a gesture executed 

by a dancer may lie somewhere between Heavy and Light Weight, it is significantly easier to 

assign a binary classification, rather than a numeric value of, say, 0.765, to that Weight 

dimension of motion. Additionally, this simplification leads to results of higher accuracy since 

no human error is introduced through a manual choosing of threshold value for the outputs of the 

neural networks. The new, simpler Max/MSP patch for the discrete classifier, shown in Figure 4, 

displays the appropriate valuation for each Effort dimension. 

Therefore, in order to maximize the accuracy and descriptiveness of the system, I decided to 

choose the discrete AdaBoost classifiers (using decision trees as the weak learner) as the 

preferred learning algorithm, but with a dataset of the same examples excluding position data. 

This setup increased the performance of the system, and my subsequent tests of the algorithm 

with new movements showed a significant increase in the responsiveness and accuracy of the 

                                                             
8 The reasoning for this apparent discrepancy between extraordinarily high cross-validation accuracies and the actual 

performance of the system as measured by my experience was derived from conversations with Professor Fiebrink. 



resulting classifications. I believe that this improvement is caused by the fact that the learner was 

no longer erroneously associating the spatial location of my body with the expressiveness of the 

motions themselves, which should be independent of their position in space. The resulting 

accuracies are shown below in Table 3. 

Dimension Accuracy of Trained 

Model on Training Set 

Cross-Validation 

Accuracy (2 Folds) 

Cross-Validation 

Accuracy (5 Folds) 

Weight 100% 75.81% 77.03% 

Space 100% 67.79% 76.73% 

Time 100% 77.4% 79.37% 

Flow 100% 69.51% 71.62% 
Table 3 Error rates for the four trained AdaBoost classifiers (excluding position) for each of the Effort dimensions 

Although the cross-validation accuracy values are not as high as those presented before in 

Table 2, the performance of the system when tested with new gestures significantly improved. 

Specifically, the classifiers no longer make errors based on an erroneous assignment of 

significance to the position of the dancer’s skeleton in space; as such, the system has an 

increased accuracy and efficiency across the vast array of movements that the human body can 

execute. Since the actual accuracy of the system has therefore improved in practice, we can see 

that the exclusion of position data has changed the machine learning problem to be more difficult 

but more applicable to the real problem of LMA Effort classification. 

Now that we have established the system to have improved performance in classifying new 

gestures, we consider the applicability and success of our system, especially with respect to the 

intended possibilities of using this package in dynamic dance performances. Clearly, from the 

accuracy values presented in Table 3, the machine learning algorithms produced by the 

Wekinator have very high performance relative to the presented dataset. However, there is still 

error in the performance of the system when used on new movements. This is understandable 

given the inherent complexity of classifying the expressiveness of gestures in dance 

performance, but the accuracy of the system is certainly adequate for applications in the realm of 



artistic works. To support this claim, we consider the fact that any applications of such a system 

to control the technical elements of a dance piece would most likely result in changes to factors 

like the color of lights or the instruments in a soundscape over a span of time rather than in an 

instantaneous fashion. This system would therefore function well, as even though there is some 

noise and inaccuracy in the classifications in the short term, the algorithms do a good job of 

assigning values to the Effort dimensions with respect to a larger time interval. As such, despite 

the errors that are present in the usage of the system and that are visible in the Max/MSP patch 

used for display in this study, the system is more than adequate for use in dance performances. 

Ultimately, then, since the goal of this project was to create a system capable of dynamically 

analyzing the expressiveness of movements for applications to multimedia performances, we 

have succeeded in this attempt. 

7. Related Work 

Now that we have discussed the details of our system, we can turn to the background 

research and related work that served as the foundation for this project. To start, we consider 

some of the systems proposed in other papers. For example, Jessop’s work established a system 

using body sensors that could track dancers’ movements in real-time [6]. Her transformation of 

this information into Laban Effort quality mappings that could then be used to control various 

technical aspects of performance formed the central inspiration for my own work. The system 

presented here, however, has the advantages of being non-intrusive and considerably less 

expensive. Additionally, her computations involved her own interpretation of which features of 

movement were significant, followed by a projection of various values she deemed important 

onto the range of [-1, 1] for the Effort dimensions [6], whereas the Wekinator’s automated 

training in my system helps to reduce any errors associated with the subjectivity and potential 



fallibility of the manual design of Effort classifiers. While her technique does produce good 

results, my system improves upon her methods because it considers an aggregate of several 

different features passed into the machine learning suite such that the complex interrelationships 

of movement qualities can be noticed by the computer in ways that humans cannot accurately 

predict or detect. 

As discussed in the Equations section, Zhao’s paper had a significant influence on the 

mechanics of my system, and the equations presented in his research are those that I chose to use 

as feature inputs for my own system [11]. His work is a detailed account of feature generation 

and extraction based on LMA and the Effort dimensions, and while some of his research is 

beyond the scope of this paper, reading through his material helped to establish a solid 

understanding of the details of motion capture analysis systems. Similarly to Jessop’s work [6], 

Zhao’s system required a neural network to be built specifically for his research; while this 

approach does work with valid results, it also introduces error and complexity into the process 

that can be simplified and improved by using an automated learning suite like the Wekinator.  

Ultimately, the motivation for this project was to create a simple, easy-to-use software 

system that could analyze the expressiveness of movement in real time with the intention of 

using this information in various artistic and educational processes. I was especially inspired by 

Tod Machover’s multimedia opera, “Death and the Powers” [7] [8], which seamlessly integrated 

technology into a theatrical performance in such a way as to make the computer systems not only 

unobtrusive partners to the human actors but also fundamental and compelling components of 

the production itself. Beyond the manipulations of light and sound based on Jessop’s work with 

the Disembodied Performance system [6], the production also established a narrative in which 

robotic performers and other computer-controlled elements were integral to the story and the 



interactions of the actors. While the scale of this opera involves much more than just the 

movement analysis covered in this project, the work presented by the MIT Media Lab in the 

production demonstrates that computer science and art truly can be interrelated in ways that 

enhance the creative opportunities of the artists and highlight the advancements in technological 

systems.  

8. Conclusions and Future Work 

Based on the captivating multimedia experiences and academic presentations that I found 

during the research process, my system was therefore designed to be easily incorporated into 

various artistic contexts as a multi-purpose tool for controlling audiovisual aspects of a larger 

piece based on the real-time movements of the performers themselves. I discovered that while 

emotion and some qualities of movement are subjective, Laban Movement Analysis and the 

Effort dimensions enable a more objective and quantifiable assessment of the expressiveness 

presented in dance performance.  

Since the generation of movement material of a given expression is subjective and personal 

process, it is difficult to accurately derive an explanation of the emotional content of a dance 

performance directly from the movement data itself. However, it is precisely this subjectivity and 

individualism in performance that makes dance such an interesting and compelling art form, and 

so I find it very significant that this software system is able to analyze the expressiveness of 

dancers without hindering their artistic capabilities. Additionally, this system has proven to be an 

accurate and efficient analyzer of the qualities of motion in real-time, which allows for dynamic 

applications of the technology to multimedia presentations with an inexpensive and easy-to-use 

system.  



The system created here does, however, have its shortcomings and areas for improvement. 

For example, as discussed in the System Analysis section, the Wekinator classifiers still have 

some inaccuracies and noise when new movements are performed in front of the Kinect. This 

signifies that the system tends to fail or have less accuracy when presented with gestures differ 

too significantly from those that were in the training dataset. Since it is impossible to encode 

every possible movement into the dataset, this limitation of the system is understandable, and 

could be improved if there were a much larger dataset available for training. Additionally, even 

with the difficulties of the system, its performance is more than accurate enough for use in actual 

dance pieces. That is, the classifiers do a sufficiently good job that the resulting output could 

easily be translated into inputs for controlling technical elements of multimedia performances.  

As for future work for improving and refining the system and its accuracy, I would first focus 

on developing new movement feature equations that could better model expressiveness and the 

Effort dimensions. While the mathematical models that I used here were descriptive, it is clear 

that the relationships between the dancer’s movements and the qualities of his gestures are more 

complex than can be simply modeled by velocity, acceleration, and the other input features used 

in this project. In addition to finding new and more descriptive equations, I would also spend 

time experimenting with which input values were sent to the Wekinator in order to improve the 

accuracy of the machine learning algorithms. Specifically, it would be interesting to consider 

building classifiers when the dataset is restricted to, say, data about a single joint (like the right 

wrist, for example), or only the minimum and maximum values of each mathematical feature 

equation over all joints in the skeleton. I believe that, with more time and data, the accuracy of 

this system could be refined even further for better performance as a standalone Effort classifier.  



Given the success of this system in terms of being a useful source LMA Effort 

classifications, which can be used for dynamically manipulating the technical elements of dance 

performances based on the simultaneous movements of the dancers on stage, it is also feasible to 

consider extending this system into other LMA qualities, such as Body or Shape, to track some 

of the different descriptors of movement that are not as directly related to expressiveness as 

Effort. Another potential extension of the system would involve training the classifiers with 

movement information from multiple dancers instead of just relying on my own experiences and 

gestural tendencies. This would enable a broader base of motions for training, which could then 

improve the overall accuracy of the system. Without this expanded base, though, using the 

system on other dancers is still possible; it is simple to set up the Kinect along with my software 

package and observe the Effort classifications that the system outputs. The accuracy of these 

classifications could then be analyzed through subjective experiences as well as through cross-

validation accuracy values, and such considerations could lead to more accurate system overall. 

This would be significant in applying the system to actual dance performances, as most pieces 

will involve multiple dancers, each with their own unique styles and trends of movement.  

Ultimately, then, this research with LMA, the Wekinator, and the XBOX Kinect has proven 

fruitful in providing advancements for the integration of technology and the arts. From this 

development, then, future work would involve integrating this system into actual performances, 

as by sending the resulting Effort dimensions in OSC messages to lighting boards, sound 

generators, or other hardware systems (a humanoid dance-bot, perhaps?) to create and 

manipulate rich environments for artistic projects, controlled automatically in real-time.  

Clearly, then, this system has simplified and improved the existing processes of motion 

capture and Laban Movement Analysis to make these useful and interesting tools more readily 



available to the average artist. It is my sincere hope that such technologies will continue to grow 

more prevalent in the dance community, as the possibilities for engaging and remarkable 

performances continue to expand as we discover new ways to integrate the creative and the 

scientific. 
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